DalPhos-Au Complexes and Their Reactivities

MR May 07th 2024

Yumeng Liao, D3

Inspiration

Hemilabile ligand-supported Ru complexes (My master's work at Iwasawa lab)

N,N-dimethylamino group: flexible substituent in hemilabile ligand

Background

Why "DalPhos"?

Chem. Eur. J. 2010, 16, 1983

A Highly Versatile Catalyst System for the Cross-Coupling of Aryl Chlorides and Amines

Rylan J. Lundgren, Antonia Sappong-Kumankumah, and Mark Stradiotto*^[a]

DalPhos: Phosphine developed by chemists

from **Dal**housie University

Prof. Mark Stradiotto

1st Example Using DalPhos

Same catalytic reactivity with bidentate & monodentate ligands

bidentate bisphosphines

this work

monodentate phosphines and carbenes

Pd-catalysed cross-coupling

DalPhos-Au Complex Hydroamination of alkyne

Ligand screening

Substituents at phosphino group

1-Ad substituent gives best performance

Substituents at aniline ring

o-substituent all performed well (o-morpholino is the best)

DalPhos-Au Complex Hydroamination of alkyne

Same catalytic reactivity with bidentate & monodentate ligands

J. Am. Chem. Soc. 2010, 132, 18026.

DalPhos-Au Complex Hydroamination of alkyne

Stochiometric reaction of 1 with $AgB(C_6F_5)_4 \& 2a$ or 3-hexyne

L6 is acting as a monodentate phosphine ligand

No hemilabile feature was observed

Why OA to Au(I) is difficult?

Standard Electrode Potentials and Temperature Coefficients at rt (298.15 K)

Acid solutions (pH = 0.000)	E ^o (V)	
Pd ²⁺ /Pd (c)	0.915	
Pt ²⁺ /Pt (c)	1.18	
Au ³⁺ /Au ⁺	1.41	High redox potentio

J. Phys. Chem. Ref. Data 1989, 18, 1.

Intramolecular OA to cationic Au(I) complex (stoichiometric)

Oxidative Addition to Au(I) Linear-Prefered Au(I)

Oxidative Addition to Au(I) Reactivity

Oxidative addition to DalPhos-Au(I) complex

Oxidative Addition to Au(I) Reactivity

Oxidative Addition to Au(I) Reactivity

Au(III)-mediated $C_{Ar}-C_{Ar}$ coupling (CATALYTIC)

Nat. Commun. 2017, 8, 565.

1,2-Diarylation of Alkene Background

Migratory insertion approach to 1,2-diarylation of alkene (known)

Stoichiometric 1,2-diarylation of alkene

Catalytic 1,2-diarylation of alkene

Wide substrate scope of alkene and aryl halide.

EDG-, EWG-substituted arene ring, heteroarene ring, natural product derived ring etc.

1,2-Diarylation of Alkene

Mechanistic Study (1)

b) NMR studies- Effect of 1a on oxidative addition of Me-DalPhosAuCI with 2a:

In the absence of **1a**, the OA of Ar–X (**2a**) to Au(I) is instantaneo Wat. Commun. **2017**, *8*, 565.

Full conversion to **A** (OA of **2a** to Au)requires long time in the presence of **1a**

Angew. Chem. Int. Ed. 2020, 59, 11808.

Mechanistic Study (2)

Θ

cald m/z = 659.2824

found m/z = 659.2848

SbF₆

CH₃CN

cald m/z = 618.2558

found m/z = 618.2579

16

Structure of **3a-D**: anti addition of Ar group.

Supporting a S_FAr reaction for the carboauration of alkene

SbF₆

H₂O

cald m/z = 636.2664

found m/z = 636.2697

Mass-spectroscopically detectable intermediate C

Angew. Chem. Int. Ed. 2020, 59, 11808.

1,2-Diarylation of Alkene

Proposed mechanism

Au(III)-Mediated Aryl-F Coupling Background

General procedure for oxidative coupling at Au with F⁺

Difficulty on characterisation & isolation of Au(III)

J. Am. Chem. Soc. 2024, 146, 11352.

Au(III)-Mediated Aryl-F Coupling Background

Reason for the less study on oxidative fluorination of Au(I)

Coordinatively unsaturated

Coordinative saturation? (CNC pincer ligand)

Au(III)-Mediated Aryl-F Coupling

Employment of hemilabile DalPhos ligand

1k: 78%^b

1m: 71%^b

11: 74%^b

Au(III)-Mediated Aryl-F Coupling Reactivity

Transmetalation of Au(III)-F with electrophiles

Reductive elimination of Au(III)-F

J. Am. Chem. Soc. 2024, 146, 11352.

DFT study on RE of Au(III)-F

Blue LEDs: 0%

Blue LEDs: 0%

Hemilabile feature

The nature of Au(I) complexes that favour a linear structure limits ligand modulation. Hemilabile DalPhos ligand maintains the linear mono-coordination, while coordinates to Au(III) centre for further donation.

> Various developments of challenging reaction

> Deeper understanding on reaction mechanism (isolable intermediate)

THANK YOU FOR YOUR PATIENCE